

化 学 品 安 全 技 术 说 明 书

填表时间 2019-12-28

打印时间 2026-01-09

MSDS标题

HEXACHLOROPROPENE MSDS报告

产品标题

全氯丙烯

CAS号

1888-71-7

化学品及企业标识

PRODUCT NAME

HEXACHLOROPROPENE

NFPA

Flammability	0
Toxicity	2
Body Contact	2
Reactivity	2
Chronic	2

SCALE: Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4

PRODUCT USE

Solvent, plasticiser, hydraulic fluid.

SYNONYMS

C3Cl₆, CCl₃CCl=CCl₂, "propene, hexachloro-", hexachloropropylene, "RCRA Waste No. U243"

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

May form explosive peroxides.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. Considered an unlikely route of entry in commercial/industrial environments. Ingestion may result in nausea, pain, vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis.

EYE

Although the material is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. The material is not thought to be a skin irritant (as classified using animal models). Temporary discomfort, however, may result from prolonged dermal exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. The liquid may produce skin discomfort following prolonged contact. Defatting and/or drying of the skin may lead to dermatitis. Toxic effects may result from skin absorption.

INHALED

Inhalation may produce health damage*. The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of the material, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation hazard is increased at higher temperatures. Acute intoxication by halogenated aliphatic hydrocarbons appears to take place over two stages. Signs of a reversible narcosis are evident in the first stage and in the second stage signs of injury to organs may become evident, a single organ alone is (almost) never involved. Depression of the central nervous system is the most outstanding effect of most halogenated aliphatic hydrocarbons. Inebriation and excitation, passing into narcosis, is a typical reaction. In severe acute exposures there is always a danger of death from respiratory failure or cardiac arrest due to a tendency to make the heart more susceptible to catecholamines (adrenalin).

CHRONIC HEALTH EFFECTS

Principal routes of exposure are usually by skin contact/absorption and inhalation of vapor. Halogenated oxiranes may arise following epoxidation of haloalkenes. The carcinogenicity of halogenated oxiranes may lie in the reactivity of an epoxide intermediate. It is reported that 1,1-dichloroethylene, vinyl chloride, trichloroethylene, tetrachloroethylene and chloroprene, for example, are carcinogens *in vivo* - this may be a consequence of oxirane formation. Symmetrically substituted oxiranes such as 1,2-dichloroethylene and 1,1,2-2- tetrachloroethylene are more stable and less mutagenic than unsymmetrical chlorinated oxiranes such as 1,1-dichloroethylene, 1,1,2-trichloroethylene and monochloroethylene (vinyl chloride). The carcinogenicity of 1,1-dichloroethylene has primarily been associated with inhalation exposure while that of vinyl chloride, trichloroethylene and tetrachloroethylene occurs following exposure by both inhalation and oral routes. National Toxicology Program Toxicity Report Series Number 55; April 2002 Various studies report an association between cancer and industrial exposure to tetrachloroethylene; IARC concluded that this evidence is sufficient to assign appropriate warnings. Similar warnings have been issued by IARC for vinyl fluoride. Similarly vinyl bromide exhibited neoplastic and tumourigenic activity in rats exposed by inhalation and is classified by various bodies as potentially carcinogenic. Substances such as chloroprene (2-chloro-1,3-butadiene), are reported to produce an increased frequency of chromosomal aberrations in the lymphocytes of Russian workers. Russian epidemiological studies also suggest an increased incidence of skin and lung cancer following exposure to chloroprene, a result which is not supported by other studies. Generally speaking, the monohalogenated substances exhibit higher carcinogenic potential than their dihalogenated counterparts. Whether additional substitution lessens such hazard is conjectural. Tetrafluoroethylene, for example, produced clear evidence of carcinogenic activity in a two-year inhalation study in rats and mice. National Toxicology Program Technical Report Series 450, April 1997.